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Abstract Optically active poly(imide-amide)s (PIAs) and poly(imide-ester)s

(PIEs) containing two silicon atoms in the main chain and L-alanine as chiral

residue, were synthesized. The former were prepared by direct polycondensation

between two dicarboxilic acids and bis(4-aminophenyl)dipenylsilane according to

the triphenyl phosphate method. PIEs were synthesized with bis(4-hydroxy-

phenyl)dimethyl o ethylmethylsilane, according to the tosyl chloride method.

Monomers and polymers were characterized by IR and 1H, 13C, and 29Si NMR

spectroscopy and elemental analysis, and the results were in agreement with the

proposed structures. PIAs and PIEs showed low values of ginh, indicative of low

molecular weight species, probably of oligomeric nature. Polymers were soluble in

polar aprotic solvents and also in common solvents such as CH2Cl2, CHCl3, and

acetone, due to the effect of both, the polarity of the Si–C bond and the presence of

an aliphatic residue provided by the L-alanine amino acid. The glass transition

temperatures (Tg) of the PIAs were higher than those obtained for PIEs, due to the

higher flexibility of the ester group. The thermal decomposition temperatures (TDT)

were lower than 400 �C and dependent of the polymer structure.

Keywords Poly(imide-amide) � Poly(imide-esters) � Silicon-containing polymers �
Optically active polymers � Glass transition temperature � Thermal decomposition

temperature

Introduction

Poly(imides), poly(esters), and poly(amides) are important heat-resistant polymers

used as high-performance engineering materials. In general, the attention has been
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focused on the synthetic methods and on the structural variances in order to upgrade

the processability and solubility through the design of new monomers in order to

obtain polymers with improving solubility but maintaining the thermal stability [1].

In the same sense, the modifications can include two or more functional groups and

the introduction of flexible linkages of aliphatic nature or bulky substituents in the

polymeric chain [2].

On the other hand, the introduction of silarylene groups in the repeating unit

[–Ar–Si(R1R2)–Ar–], described by Bruma et al. [3], can improve the solubility

maintaining the thermal stability. In this sense, the lower electronegativity of the Si

atom compared to carbon, increases the thermal stability of silicon-containing

polymers due to a higher ionic character of the C–Si linkage compared with the C–C

bond, in spite of their similar bond energy dissociation, which permits electronic

transport, thus also increasing the solubility and thermal stability.

In addition, the introduction of chiral atoms in the polymeric chain has been very

attractive in recent years. Mallakpour et al. have described in a recent review about

the synthesis of optically active condensation polymers that the introduction of

chiral carbons in the polymeric structure is an attractive topic due to the wealthy and

multifacetic architecture of chiral polymers compared with small molecules. They

mention that the synthesis of chiral polymers containing amino acids is a subject of

interest, because a high degree of amino acid functionality can lead to polymers

with increased solubility and the ability to form secondary structures [4].

Recently, we published a work about the synthesis and characterization of poly(imide-

amides) and poly(imide-esters) containing two Si atoms in the main chain and glycine as

part of the diacid residue. These polymers are insoluble in common solvents, such as

CHCl3 and CH2Cl2, and show thermal properties that depend on the groups, methyl or

ethyl, bonded to the Si atom of the diacid residue, for poly(imide-amides), and to the

Si atom of both residues, diacid and diphenol, for poly(imide-esters) [5].

Continuing with this work, here we described the synthesis, characterization and

thermal properties of analogous poly(imide-amides) and poly(imide-esters) but

incorporating L-alanine as chiral amino acid in the diacid residue, and containing

two Si atoms in the main chain.

Experimental

Materials

L-alanine, (CH3)2SiCl2, (CH3CH2)(CH3)SiCl2, triphenyl phosphite (TPP), CaCl2,

N-methyl-2-pyrrolidone (NMP), p-bromophenol and 4-bromo-N,N-bis(trimethyl-

silyl)aniline were obtained from Aldrich Chemical (Milwaukee, WI) and used

without further purification. AlfaAesar provided 4-bromo-o-xylene. Tetrahydrofuran

(THF) and diethylether (Aldrich Chemical, Milwaukee, WI) were dried over sodium

previous to use. All other reagents and solvents were purchased commercially as

analytical-grade and used without further purification.

The IR spectra (KBr pellets) were recorded on a Perkin-Elmer 1310 spectro-

photometer over the range 450–4000 cm-1. 1H, 13C, and 29Si NMR spectra were
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carried out on a 400 MHz instrument (Bruker AC-200) using DMSO-d6, CDCl3 or

acetone-d6 as solvents and TMS as the internal standard. Viscosimetric measure-

ments were made in a Desreux-Bischof type dilution viscosimeter at 25 �C

(c = 0.3 g/dL). Tg values were obtained with a Mettler-Toledo DSC 821

calorimetric system (20 �C min-1 under N2 flow). Thermogravimetric analyses

were carried out in a Mettler TA-3000 calorimetric system equipped with a TC-10A

processor, and a TG-50 thermobalance with a Mettler MT5 microbalance. Samples

of 6–10 mg were placed in a platinum sample holder and the thermogravimetric

measurements were carried out between 30 and 800 �C with a heating rate of 20 �C

min-1 under N2 flow. Specific rotations were measured in an Optical Activity

Automatic polarimeter, Model AA-5 at 17 �C. Elemental analyses were performed

in a Fisons EA 1108-CHNS-O equipment.

Monomer synthesis

The precursors bis(3,4-dimethylphenyl)-dimethylsilane, bis(3,4-dimethylphenyl)-

ethylmethylsilane, bis(3,4-dicarboxyphenyl)-dimethylsilane, bis(3,4-dicarboxyphe-

nyl)-ethylmethylsilane, bis(3,4-dicarboxyphenyl)-dimethylsilane dianhydride and

bis(3,4-dicarboxyphenyl)-ethylmethylsilane dianhydride were synthesized follow-

ing procedures described previously [6–9]. The silicon-containing diphenols and the

diamine bis(4-aminophenyl)-diphenylsilane were obtained according to described

procedures [10, 11].

N,N0-(4,40-dimethylsilylenediphthaloyl)-bis-(L)-alanine and N,N0-(4,40-ethyl-

methylsilylenediphthaloyl)-bis-(L)-alanine diacids were synthesized following

reported procedures (Scheme 1), in which the dianhydride derivative (2.8 mmol)

and L-alanine (5.6 mmol) are refluxed 3 h in 30 mL of acetic acid. The solvent was

removed by distillation under reduced pressure and the residue treated with water

and drops of HCl and filtered. The obtained solid was washed several times with

water for removing the L-alanine remained. Finally, the diacid was dried at 40 �C

under vacuum until constant weight and characterized [12].

N,N’-(4,40-dimethylsilylenediphthaloyl)-bis-(L)-alanine diacid (I-a)

Yield: 74%. M.p.: 199–202 �C. [a]589
17 (acetone) = -21.9 deg dm-1 g-1 cm3. IR

(KBr) (cm-1): 3241 (OH), 3064 (CH arom.), 2961 (CH aliph.), 1775 (C=O imide),

1717 (C=O acid), 1610 1526 (C=C arom.), 1459 (CH3), 1252 (Si–C aliph.), 837,

784 (arom. 1,2,4-subst.). 1H NMR (acetone-d6) (d) (ppm): 0.81 (s, 6H, Si–CH3),

1.67 (d, 6H, CH–CH3), 4.97 (q, 2H, CH), 7.87–8.12 (m, 6H, arom.). 13C NMR

(acetone-d6) (d) (ppm): -3.86 (Si–CH3), 14.4 (CH3CH), 47.0 (CH), 122.4, 128.3,

131.2, 133.0, 140.3, 145.8 (C arom.) 167.1; 167.3 (C = O imide), 170.2 (C=O

acid). 29Si NMR (acetone-d6) (d) (ppm): -4.5.

N,N0-(4,40-ethylmethylsilylenediphthaloyl)-bis-(L)-alanine diacid (I-b)

Yield: 63%. M.p.: 219–221 �C. [a]589
17 (acetone) = -22 deg dm-1 g-1 cm3. IR

(KBr) (cm-1): 3392 (OH), 3080 (CH arom.), 2954 (CH aliph.), 1774 (C=O imide),
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1715 (C=O acid), 1611 (C=C arom.), 1452, 1383 (CH3), 1256 (Si–C aliph.), 839,

789 (arom. 1,2,4-subst.). 1H NMR (DMSO-d6) (d) (ppm): 0.70 (s, 3H, Si–CH3), 0.96

(t, 3H, CH2CH3), 1.26 (q, 2H, CH2CH3), 1.53 (d, 6H, CH–CH3), 4.94 (q, 2H, CH),

7.87–8.13 (m, 6H, arom.). 13C NMR (DMSO-d6) (d) (ppm): -5.4 (Si–CH3), 4.77

(CH2CH3), 7.49 (CH2CH3), 15.4 (CHCH3), 48.1 (CH), 122.9, 128.7, 131.2, 132.9,

140.9, 144.9 (C arom.), 167.7, 167.9 (C=O imide), 169.5 (C=O acid). 29Si NMR

(DMSO-d6) (d) (ppm): -2.6.

Poly(imide-amide) and poly(imide-ester) synthesis

Poly(imide-amides) (PIAs)

Poly(imide-amides) were synthesized according to a described procedure [13, 14],

in which bis(4-aminophenyl)-diphenylsilane (0.5 mmol) and the diacid N,N0-(4,40-
dimethylsilylenediphthaloyl)-bis-(L)-alanine or N,N0-(4,40-ethylmethylsilylene diph-

thaloyl)-bis-(L)-alanine (0.5 mmol) were mixed with triphenyl phosphite (0.366 mL,

1.39 mmol), CaCl2 (0.122 g, 1.1 mmol), pyridine (0.33 mL) and N-methyl-2-

pyrrolidone (0.62 mL), and the mixture was heated at 110–130 �C for 3 h. After

this time, the mixture was poured into methanol and the PIA filtered, washed, dried

until constant weight and characterized.
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Scheme 1 Synthetic route for PIAs and PIEs
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PIA-1 Yield: 48%. [a]589
17 (acetone) = -13 deg dm-1 g-1 cm3. IR (KBr) (cm-1):

3434 (NH), 3067 (CH arom.), 2955 (CH aliph.) 1744, 1718 (C=O), 1591, 1491

(C=C arom.), 1443 (Si–C arom.), 1250 (Si–C aliph.), 814 (arom. p-subst.), 738, 714

(arom. mono-subst.). 1H NMR (DMSO-d6) (d) (ppm): 0.72 (s, 6H, CH3–Si), 1.15 (d,

6H, CH3CH), 4.9 (q, 2H, CH), 7.41–8.02 (m, 24H, arom.), 9.97 (s, 2H, NH). 13C

NMR (DMSO-d6) (d) (ppm): -2.9 (CH3–Si), 15.7 (CH3CH), 49.3 (CH), 120.6,

122.8, 128.5, 128.7, 130.2, 131.4, 132.7, 135.1, 135.4, 135.5, 136.2, 136.8, 140.9,

145.9 (C arom.), 167.8, 168 (C=O). 29Si NMR (DMSO-d6) (d) (ppm): -4.1 [Ph–

Si(CH3)2–Ph], -15.3 [Ph–Si(Ph)2–Ph]. Elem. Anal. Calcd. for [C48H40N4O6Si2]n;

(824): C: 69.90%, N: 6.80%, H: 4.85%. Found: C: 70.73%, N: 6.50%, H: 4.68%.

PIA-2 Yield: 98%. [a]589
17 (acetone) = -41.1 deg dm-1 g-1 cm3. IR (KBr)

(cm-1): 3466 (NH), 3069 (CH arom.), 2957, 2875 (CH aliph.), 1774, 1717

(C=O), 1593, 1515 (C=C arom.), 1443 (Si–C arom.), 1250 (Si–C aliph.), 833 (arom.

p-subst.), 741, 700 (arom. mono-subst.). 1H NMR (DMSO-d6) (d) (ppm): 0.72 (s,

3H, CH3–Si), 0.97 (t, 3H, CH3CH2), 1.26 (q, 2H, CH2), 1.56 (d, 6H, CH3CH), 4.92

(q, 2H, CH), 6.69–8.01 (m, 24H, arom.), 9.9 (s, 2H, NH). 13C NMR (DMSO-d6) (d)

(ppm): -5.5 (CH3–Si), 4.6 (CH3CH2), 7.5 (CH2–CH3), 15.6 (CH3CH), 49.3

(CHCH3), 115.2, 119.8, 120.8, 122.8, 128.7, 129.2, 130.6, 132.7, 135.1, 135.8,

136.6, 136.8, 137.2, 145.2 (C arom.), 167.9, 168.3 (C=O). 29S NMR (DMSO-d6) (d)

(ppm): -2.6 [Ph–Si(CH3)(CH2CH3)–Ph], -15.3 [Ph–Si(Ph)2–Ph]. Elem. Anal.

Calcd. for [C49H42N4O6Si2]n; (838): C: 70.17%, N: 6.68%, H: 5.01%. Found:

C: 71.23%, N: 7.02%, H: 4.90%.

Poly(imide–esters) (PIEs)

Poly(imide-esters) were synthesized according to a described procedure [15], in

which 1.07 mmol of tosyl chloride, 0.02 mL of pyridine, 0.06 mL of N,N-

dimethylformamide and 0.05 mmol of the diacid in 0.02 mL of pyridine were

mixed, and the mixture stirred at room temperature for 30 min. After this time,

0.05 mmol of the diphenol and 0.02 mL of pyridine were added and the new

mixture stirred for 30 min at room temperature. Then, the mixture was heated at

120 �C for 2 h, and poured in methanol–water 1:4 mixture. The polymer was

filtered, washed, dried until constant weight and characterized.

PIE-1 Yield: 53%. [a]589
17 (acetone) = -13.2 deg dm-1 g-1 cm3. IR (KBr)

(cm-1): 3060 (CH arom.), 2977, 2939 (CH aliph.), 1772, 1713 (C = O), 1598,

1503 (C = C arom.), 1450, 1383 (CH3), 1447 (Si–C arom.), 1248 (Si–C aliph.), 837

(arom. 1,2,4-subst.), 814 (arom. p-subst.). 1H NMR (acetone-d6) (d) (ppm): 0.81 (s,

12H, CH3–Si), 1.67 (d, 6H, CH3–CH), 4.95–5.0 (q, 2H, CH), 7.87–8.11 (m, 14H,

arom.). 13C NMR (acetone-d6) (d) (ppm): -3.84 (CH3–Si), 14.4 (CH3–CH), 47.1

(CH), 122.2, 122.4, 122.5, 128.4, 131.2, 131.3, 132.6, 132.9, 134.8, 145.8 (C arom.),

167.1, 167.3 (C=O imide), 170.4 (C=O ester). 29Si NMR (acetone-d6) (d) (ppm):

-4.5. Elem. Anal. Calcd. for [C37H34N4O8Si2]n; (690): C: 64.35%, N: 4.06%,

H: 4.93%. Found: C: 63.74%, N: 3.87%, H: 4.61%.
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PIE-2 Yield: 54%. [a]589
17 (acetone) = -13 deg dm-1 g-1 cm3. IR (KBr) (cm-1):

3061 (CH arom.), 2962, 2877, 2914 (CH aliph.), 1774, 1718 (C=O), 1590, 1498

(C=C arom.), 1459, 1381 (CH aliph.), 1255 (Si–C aliph.), 907, 833 (arom. 1,2,4-

subst.), 791 (arom. p-subst.). 1H NMR (acetone-d6) (d) (ppm): 0.33 (s, 6H, CH3–Si),

0.53 (q, 4H, CH2), 0.92 (d, 6H, CH3–CH2), 1.35 (d, 6H, CH3–CH), 4.96–5.01 (q,

2H, CH), 6.84–8.08 (m, 14H, arom.). 13C NMR (acetone-d6) (d) (ppm): -5.5 (CH3–

Si), 5.6 (CH3–CH2), 7.4 (CH2), 15.5 (CH3–CH), 48.2 (CH), 121.9, 122.0, 123.3,

123.4, 129.5, 132.1, 133.8, 135.4, 136.5, 141.5 (arom.), 167.9, 168.1 (C=O imide),

169.3 (C = O ester). 29Si NMR (acetone-d6) (d) (ppm): -2.51, -2.53. Elem. Anal.

Calcd. for [C39H38N2O8Si2]n; (718): C: 65.18%, N: 3.90%, H: 5.29%. Found: C:

66.23%, N: 3.71%, H: 5.01%.

Results and discussion

The tetramethyl derivatives, tetraacids and dianhydrides were synthesized according

to procedures described previously [6–9]. The diphenols and the diamine were

obtained as described in the literature [10, 11].

The dianhydrides were reacted with L-alanine in acetic acid under reflux in order

to obtain the silicon-containing diacids Ia and Ib. The purification of these diacids

was achieved washing with water in order to eliminate the residue of L-alanine. The

characterization was made using IR and NMR spectroscopy, and the results were in

agreement with the proposed structures and are shown in the experimental part.

Poly(imide-amide)s were obtained by direct reaction between the diacid and the

diamine, according to the method using triphenyl phosphite in N-methyl-2-

pyrrolidone and pyridine with CaCl2, shown in Scheme 1. Polymers were

precipitated in methanol, dried and characterized by spectroscopic methods. The

results for PIA-1 and PIA-2 are in agreement with the proposed structures.

The 29Si NMR spectrum of PIA-1 showed the signals corresponding to the two Si

atoms in the main chain, being the first at -4.1 ppm, bonded to aliphatic groups,

and the second at -15.3 ppm, bonded to aromatics rings only. For PIA-2, the 29Si

NMR spectra showed the same signal for the Si atom of the diamine residue, but the

other at -2.6 ppm due to the effect of the ethyl group. These results are in

agreement with those obtained for other monomers and polymers containing Si in

their structure [5, 16].

Poly(imide-amide)s were obtained directly from the diacids and the diphenols

with tosyl chloride in N,N-dimethylformamide, and the polymers were precipitated

in a methanol/water mixture, dried and characterized by spectroscopic methods. The
29Si NMR showed one signal for PIE-1 at -4.5 ppm, which was described for us in

other systems in which the Si atom is bonded to methyl groups. For PIE-2, it was

possible to observe two closely similar signals for the Si atoms, at -2.51 and

-2.53 ppm, related to two very similar magnetic environments. The two signals

observed in the 29Si NMR spectra corresponding to the two Si atoms are indicative

of the polymer formation.

Table 1 shows the solubility of the polymers, which are soluble in aprotic

polar solvents such as dimethylsulfoxide and N,N-dimethylformamide,
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N,N-dimethylacetamide, partially soluble in m-cresol, but soluble in acetone, CHCl3
and CH2Cl2, due probably to the effect of the amino acid and the imide group. In

fact, the imide group and the aliphatic residue increase the interactions with the

aprotic polar solvents and increase the solubility of the material.

Table 2 shows the yields and the ginh values obtained for the four polymers. The

yields were normal with the exception of PIA-2, which was practically quantitative.

The ginh values are similar and low, which is indicative that polymers are of low

molecular weight, probably of oligomeric nature.

Table 2 also shows the Tg values of the PIAs and PIEs. PIAs showed higher Tg

values than PIEs due to the fact that the former are derived from a wholly aromatic

diamine, and the amide group makes the PIAs more rigid than the PIEs, which have

a more flexible ester group. When PIA-1 and PIA-2 are compared, can be noted that

when the ethyl group is present in the acid residue there is a decrease in the Tg value,

due to an increase of the flexibility of the side groups of the polymeric chain. The

same effect it is possible to see in the PIEs. The increase of the volume of the side

groups increases the flexibility and the asymmetry of the chain, being a consequence

a decrease of the Tg values. This behaviour is in agreement with that described for

analogous silicon-containing poly(imide-esters) but derived from glycine instead of

L-alanine [5]. For PIEs, the values shown in this work are lower, due to the effect of

the methyl group of L-alanine in comparison with the effect of the glycine without

side groups.

Table 2 also shows the thermal decomposition temperatures (TDT) for all

polymers, which is the temperature at which the polymers lose 10% of weight. In

general, a polymer is considered as thermostable when the weight loss at 400 �C is

Table 1 Solubility of the PIAs and PIEs

Polymer DMSO DMF DMAc m-cresol CHCl3 CH2Cl2 Acetone

PIA-1 ? ? ? ? ? ? ?

PIA-2 ? ? ? ± ? ? ?

PIE-1 ? ? ? ± ? ? ?

PIE-2 ? ? ? ? ? ? ?

?, Soluble at room temperature; ±, partially insoluble at room temperature

Table 2 Yields, ginh, glass transition temperatures (Tg) and thermal decomposition temperatures (TDT)

of the PIAs and PIEs

Yield (%) ginh (dL/g)a Tg (�C) TDTb (�C)

PIA-1 48 0.06 180 280

PIA-2 98 0.06 111 286

PIE-1 53 0.06 80 188

PIE-2 54 0.10 60 365

a Inherent viscosity, in CHCl3 at 25 �C (c = 0.3 g/dL)
b 10% weight loss temperature
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lower than 10%, and in this sense these polymers con not be considered as

thermostables.

The TDT values of PIAs are practically the same, and also similar to those

obtained for analogous PIAs and PIEs derived from diacids with glycine [5]. PIA-1

showed a TDT value of 280 �C, which is lower than that obtained for the analoge

with glycine (294 �C). The methyl group of the L-alanine makes the polymer more

flexible, and consequently with less thermal stability. The inverse occurs with PIA-2

with a TDT value of 286 �C respect to the analoge with glycine (275 �C), but the

small difference does not allow to obtain more conclusions.

There is a great difference between PIE-1 and PIE-2, being the difference the

ethyl groups bonded to both Si atoms. If we compare these polymers with those

derived from glycine, the trend is the inverse, because the polymer with ethyl groups

bonded to the Si atom has less stability than that with methyl group bonded to the Si

atom. In fact, it seems that the methyl side group of the L-alanine and the ethyl

groups bonded to the Si atoms in PIE-2, increase the interactions between the

chains, as well as the asymmetry and, consequently, the thermal stability in this

poly(imide-ester).

Conclusions

Silicon-containing poly(imide-amides) (PIAs) and poly(imide-esters) (PIEs) were

obtained from two diacids, derived from a dianhydride and L-alanine, and bis(4-

aminophenyl)diphenylsilane, for PIAs, and bis(4-hydroxyphenyl)dimetyl- or ethyl-

methylsilane, for PIEs. The presence of a flexible and aliphatic residue increases the

solubility in common organic solvents such as CHCl3 and CH2Cl2. Low values of

ginh are indicative of low molecular weight polymers of oligomeric nature. The Tg

and TDT values are influenced by the nature of the groups bonded to the Si atom of

the acid residue, in the case of PIAs, and both, the acid and the diphenol, in the case

of the PIEs.
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